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Abstract

The propagation of finite-amplitude waves in a homogeneous, isotropic, stress-free elastic plate is
investigated theoretically. Geometric and weak material non-linearities are included, and perturbation is
used to obtain solutions of the non-linear equations of motion for harmonic generation in the waveguide.
Solutions for the second-harmonic, sum, and difference-frequency components are obtained via modal
decomposition. Ordinary differential equations for the modal amplitudes in the expansion of the second-
order solution are obtained using a reciprocity relation. There are no restrictions on the modes or
frequencies of the primary waves. Two conditions for internal resonance are quantified: phase matching,
and transfer of power from the primary to the secondary wave.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Although non-linear elastic wave propagation is a subject of considerable interest [1], most of
the research has focused on bulk [2] and surface waves [3,4]. Bulk and surface waves are non-
dispersive, and therefore all frequency components propagate at the same speed. In contrast,
waveguide modes are highly dispersive, and they can propagate in a wide variety of modes.
One important application of elastic waves is non-destructive evaluation. Traditional ultrasonic

NDE is based on linear theory and normally relies on measuring some particular parameter
(sound velocity, attenuation, transmission and reflection coefficients) of the propagating signal to
determine the elastic properties of a material or to detect defects [5,6]. The presence of defects
changes the phase and/or amplitude of the output signal, but the frequency of the input and
output signals is the same. Linear waveguide modes have been used in non-destructive testing of
large structures because these waves can propagate for long distances [5,7–10].
It is known that non-linear material parameters are much more sensitive to defects than are the

linear parameters [11] and therefore non-linear elastic waves have been proposed as a potential
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tool for ultrasound NDE. The principal difference between linear and non-linear ultrasound NDE
is that in the latter the existence and characteristics of defects are often related to an acoustic
signal whose frequency differs from that of the input signal [12–18].
There are very few studies of guided non-linear elastic waves despite the focus in NDE on

plates, rods and shells. Thin non-linear waveguides have been studied using approximate 1-D
theories to describe the displacement vector. These approximate theories are valid only when the
wavelength is large compared with the thickness of the waveguide. In this long wavelength (low
frequency) regime the effect of dispersion is weak. Non-linearity and weak dispersion can result in
the existence of stationary solutions (solitons) for this kind of problem [19].
An investigation of second-harmonic generation in isotropic plates has been reported recently by

Deng [20–22]. In these papers, the primary and secondary fields are represented by pairs of plane
waves that satisfy stress-free boundary conditions on the surfaces [23]. Only the case of resonant
second-harmonic generation is considered, requiring the existence of a second-harmonic wave
whose phase speed matches that of the primary wave. All non-resonant second-harmonic waves that
are generated are ignored. In particular, contributions due to near-resonance conditions, for which
significant second-harmonic generation can occur, are not taken into account. For example, the
authors conclude that cumulative harmonic generation cannot occur in the lowest antisymmetric
and symmetric modes. However, these are precisely the modes that support Rayleigh waves at high
frequencies, which are well known to involve resonant harmonic generation and even shock
formation (see, e.g., the literature review in Ref. [24]). More generally, because the analysis is not
formulated in terms of waveguide modes, the development is cumbersome and interpretation of the
results is obscured. Moreover, the formalism relies upon the rectangular symmetry of plates and is
not applicable to geometries such as cylindrical rods and shells.
The present investigation is based on normal mode expansion of the secondary wave field. All

modes of the secondary wave field are taken into account, not just those in resonance with the
primary wave. The problem is formulated for isotropic elastic waveguides with constant but
arbitrary cross-section. The non-linear equations of elasticity are solved by successive
approximations. In the first approximation, the primary wave is described by linear theory.
The secondary wave field is calculated by solving inhomogeneous but still linear equations of
motion, in which the forcing function is determined by using the solution for the primary wave to
evaluate the lowest order non-linear terms of the elasticity equations. The method described by
Auld [23] for linear elastic waveguides subjected to body and surface forces is used to obtain the
normal mode solution for the secondary waves. Second-harmonic, sum, and difference-frequency
generation are considered. Calculations are presented for harmonic generation in plates. Results
obtained for cylindrical rods [25] will be presented in a subsequent article.

2. Non-linear boundary value problem

The boundary value problem associated with non-linear elastic waves in a stress-free plate
(Fig. 1), in Lagrangian coordinates, is given by the equation of motion

ðlþ 2mÞ=ð= � uÞ � m=� ð=� uÞ þ f ¼ r0
@2u

@t2
; ð1Þ
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and the stress-free boundary condition

ðSL � %SÞ � ny ¼ 0 on S; ð2Þ

where u is the particle displacement, l and m are the Lam!e elastic constants, r0 is the initial density
of the body, ny is a unit vector perpendicular to the surface S of the plate, SL is the linear part of
the first Piola–Kirchhoff stress tensor given in terms of the particle displacement as

SLðuÞ ¼
l
2
ð=uþ =TuÞIþ mð=uþ =TuÞ; ð3Þ

and %S and f collect all non-linear terms. The expressions for %S and f were derived by Gol’dberg
[26] and are given by
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Gol’dberg considered the medium to be hyperelastic and used the expression for the strain energy
E proposed by Landau and Lifshitz [27],

E ¼ 1
2
lI21 þ mI2 þ 1

3
CI31 þBI1I2 þ 1

3
AI3 þ OðE4

ijÞ; ð6Þ

where I1 ¼ Eii; I2 ¼ EijEji; and I3 ¼ EijEjkEki are invariants of the Lagrangian strain tensor Eij ;
and A, B and C are the third-order elastic constants [27].
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Fig. 1. Stress-free plate of thickness 2h in a vacuum. The plate is infinite in the x and z directions.
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We shall solve the non-linear boundary value problem [Eqs. (1) and (2)] via simple
perturbation, which is based on writing the solution as a sum of two terms,

u ¼ uð1Þ þ uð2Þ; ð7Þ

where uð1Þ is the primary solution and uð2Þ is the secondary solution. The solution uð2Þ is a
perturbation due to non-linearity, and it is assumed to be small compared to uð1Þ:

juð2Þj5juð1Þj: ð8Þ

We shall refer to Eq. (8) as the perturbation condition. After substituting Eq. (7) into Eqs. (1) and
(2), we divide the non-linear boundary value problem into two linear boundary value problems,
namely, the first and second order approximations of the non-linear boundary value problem. In
the first order approximation we have

ðlþ 2mÞ=ð= � uð1ÞÞ � m=� ð=� uð1ÞÞ � r0
@2uð1Þ

@t2
¼ 0; ð9Þ

SLðuð1ÞÞ � ny ¼ 0 on S; ð10Þ

where on SLðuð1ÞÞ is the first-order approximation of the first Piola–Kirchhoff stress tensor given
in terms of uð1Þ: At second order we have

ðlþ 2mÞ=ð= � uð2ÞÞ � m=� ð=� uð2ÞÞ � r0
@2uð2Þ

@t2
¼ �fð1;1Þ; ð11Þ

SLðuð2ÞÞ � ny ¼ � %S
ð1;1Þ � ny on S; ð12Þ

where SLðuð2ÞÞ is the second order approximation of the first Piola–Kirchhoff stress tensor, and
where fð1;1Þ and %S

ð1;1Þ
contain quadratic terms in uð1Þ: Eq. (8) permits us to disregard the products

of uð1Þ and uð2Þ and the quadratic terms in uð2Þ; which are of third and fourth order, respectively.
The solution of the first order problem, Eqs. (9) and (10), is identified as the primary wave field,

and these are the plate modes. When the solution uð1Þ is known, the terms fð1;1Þ and %S
ð1;1Þ

are
determined, and they are the forcing functions on the right sides of Eqs. (11) and (12). We obtain
%S
ð1;1Þ

and fð1;1Þ by substituting uð1Þ into Eqs. (4) and (5). The solution uð2Þ can be interpreted as a
solution of a forced linear waveguide with an external force applied in the volume, fð1;1Þ; and on
the boundary, %S

ð1;1Þ � ny: Modal expansion and a reciprocity relation are used in Section 4 to
obtain the solution uð2Þ:

3. Plate modes

An individual plate mode uð1Þ can be written in the form [23,28]

uð1Þðy; z; tÞ ¼ uð1ÞðyÞeiðkz�otÞ; ð13Þ

where o is the frequency and k is the propagation wavenumber. Four different families of modes
can propagate: the symmetric and antisymmetric Rayleigh–Lamb modes (RL modes), and the
symmetric and antisymmetric horizontally polarized shear modes (SH modes). The particle
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displacement uð1ÞðyÞ corresponding to these modes can be written as follows [28]:

uð1Þx ¼ C sin by þ D cos by; ð14Þ

uð1Þy ¼ �aA sin ay � kH sin by � aB cos ay þ ikG cos by; ð15Þ

uð1Þ
z ¼ ikA cos ay þ bH cos by þ ikB sin ay � bG sin by; ð16Þ

with A;B;D;G;H ¼ 0 and Ca0 for antisymmetric SH modes, A;B;C;G;H ¼ 0 and Da0 for
symmetric SH modes, A; Ha0 and B;C;D;G ¼ 0 for symmetric RL modes; and A;C;D;H ¼ 0
and B;Ga0 for antisymmetric RL modes. The dispersion equation for the SH modes is

ðoh=ctÞ
2 ¼ ðnp=2Þ2 þ ðkhÞ2

n ¼ 0; 2; 4; 6;y symmetric;

n ¼ 1; 3; 5; 7;y antisymmetric

(
ð17Þ

and for the RL modes it is

tan bh

tan ah
¼ �

ðk2 � b2Þ2

4abk2

� �71
þ1; symmetric;

�1; antisymmetric;

(
ð18Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo=clÞ

2 � k2;
q

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw=ctÞ2 � k2

q
; ð19Þ

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r0

p
is the longitudinal wave speed, and ct ¼

ffiffiffiffiffiffiffiffiffiffi
m=r0

p
is the transverse wave speed.

For a given o there exists a finite number of propagating modes (k a real number) and an
infinite number of evanescent modes (k a complex or pure imaginary number), and the evanescent
modes appear in complex conjugate pairs, i.e., for a given frequency o; if the pair (o; k) is a
solution of the dispersion equation, then (o; k	) is also a solution [23,29]. This is relevant in the
solution of the non-linear problem because, in Section 4.1, these modes are used in the expansion
of the second order velocity field. The dispersion curves for propagating SH and RL modes of an
aluminum plate are shown in Figs. 2 and 3, respectively, in terms the following dimensionless
angular frequency %o and wavenumber %k:

%o ¼ 2ho=pct; %k ¼ 2hk=p: ð20Þ
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Fig. 2. Dispersion curves for SH modes of an aluminum plate: (a) symmetric modes and (b) antisymmetric modes.
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The elastic moduli for aluminum, for both linear and non-linear propagation, are provided in
Table 1.

4. Harmonic generation

In this section we develop the solution for the second-order problem, Eqs. (11) and (12). We
introduce the notation

SðjÞ 
 SLðuðjÞÞ; j ¼ 1; 2: ð21Þ

Now note that Eqs. (11) and (12) may also be obtained from the set of equations

= � Sð2Þ þ fð1;1Þ ¼ r0
@2uð2Þ

@t2
; ð22Þ

eð2Þ ¼ 1
2
ð=uð2Þ þ =Tuð2ÞÞ; ð23Þ

Sð2Þ ¼ ðlþ mÞeð2ÞIþ með2Þ; ð24Þ

Sð2Þ � ny ¼ � %S
ð1;1Þ � ny; on S; ð25Þ

by substituting Eq. (23) into Eq. (24) and the result into Eq. (22). From Eqs. (22)–(25), we can
thus interpret the secondary solution as the linear solution of a forced waveguide with stress
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Fig. 3. Dispersion curves for RL modes of an aluminum plate: (a) symmetric modes and (b) antisymmetric modes.

Table 1

Physical properties

Material r0 ðkg=m
3Þ cl (m/s) ct (m/s) l (GPa) m (GPa) A (GPa) B (GPa) C (GPa)

Aluminum 2727a 6381a 3150a 57b 27b �320c �200c �190c

aLandsberger [31].
bKinsler et al. [32].
cLandolt-Bornstein [33].
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tensor Sð2Þ; strain tensor eð2Þ; external force applied in the volume, fð1;1Þ; and traction applied on

the boundary, %t ¼ � %S
ð1;1Þ � ny: In Section 4.1 a formalism is introduced for constructing the second

order solution using modal expansion. The formalism is given by Auld [23] for an elastic plate
waveguide. In this formalism, a reciprocity relation is obtained through algebraic manipulations
of the field equations (22)–(25). The reciprocity relation is used to prove orthogonality of the
plate modes. A solution in terms of the particle velocity is expressed as a linear combination of
the modes. Then, the reciprocity and orthogonality relations are used to obtain the amplitude
coefficients in the modal expansion. One advantage of this approach is that each mode
individually satisfies both the source condition at z ¼ 0 and the boundary condition along
the surfaces of the plate. The approach is also appealing because of the physical insight provided
by interpreting the excitation by the primary wave as external surface and volume forces.
In subsequent sections we assume that a source excites either one or two plate modes at z ¼ 0:

The leading solution uð1Þ is thus determined, and we investigate how these excited modes interact
with each other and with the medium by finding the secondary solution uð2Þ:

4.1. Second-order solution

Consider two propagating plate modes with frequencies oa and ob; and corresponding
wavenumbers ka and kb; that are excited at z ¼ 0: The primary solution thus has the form

uð1Þ ¼ 1
2
uaðyÞeiðkaz�oatÞ þ 1

2
ubðyÞeiðkbz�obtÞ þ c:c:; ð26Þ

where c.c. stands for complex conjugate. Substituting Eq. (26) in the expressions for fð1;1Þ and
%S
ð1;1Þ

; we may write

fð1;1Þ ¼ %f
2oaðyÞei2ðkaz�oatÞ þ %f

2obðyÞei2ðkbz�obtÞ

þ %f
þðyÞei½ðkaþkbÞz�oþt� þ %f

�ðyÞei½ðka�kbÞz�o�t� þ c:c:; ð27Þ

%S
ð1;1Þ ¼ %S

2oaðyÞei2ðkaz�oatÞ þ %S
2obðyÞei2ðkbz�obtÞ

þ %S
þðyÞei½ðkaþkbÞz�oþtÞ� þ %S

�ðyÞei½ðka�kbÞz�o�tÞ� þ c:c:; ð28Þ

where o7 ¼ oa7ob (oa > ob is assumed), %f
2oa and %S

2oa are due to the self-interaction of the
excited mode uaðyÞ; %f2ob and %S

2ob are due to the self-interaction of the excited mode ubðyÞ; and
%f
þ
; %S

þ
; %f

�
and %S

�
are due to the mutual interaction of uaðyÞ with ubðyÞ: The expressions for

%f
2oa ; %S

2oa ; %f
2ob ; %S

2ob ; %f
þ
; %S

þ
; %f

�
and %S

�
are extremely lengthy for any mode ua and ub; and hence

they will not be presented here. The terms with time dependencies e�io�t and e�ioþt are the
difference and sum frequency components, respectively, and the terms with time dependencies
e�i2oat and e�i2obt are the second-harmonic components.
The secondary solution can be obtained separately, because the second-order problem is linear.

To simplify the notation, we rewrite Eqs. (27) and (28) in the form

fð1;1Þ ¼ %f
7ðyÞei½ðka7kbÞz�o7t� þ c:c:; ð29Þ

%S
ð1;1Þ ¼ %S

7ðyÞei½ðka7kbÞz�o7t� þ c:c: ð30Þ
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Second-harmonic generation is considered as a special case of sum frequency generation, in which
only a single mode is excited [ubðyÞ ¼ 0 and uaðyÞa0].
Following Auld [23], we write the secondary solution as a linear combination of the waveguide

modes at frequency o7:

vð2Þðy; z; tÞ ¼
1

2

XN
m¼1

AmðzÞvmðyÞe�io7t þ c:c:; ð31Þ

Sð2Þðy; z; tÞ � nz ¼
1

2

XN
m¼1

AmðzÞSmðyÞ � nze
�io7t þ c:c:; ð32Þ

where vð2Þ ¼ @uð2Þ=@t; vm is the particle velocity of the mth mode at frequency o7; Sm is a tensor
related to vm through Eqs. (23) and (24), and Am is the second order modal amplitude to be
determined. As shown by Auld [23], Am is the solution of the following ordinary differential
equation to be solved for each individual value of m:

4Pmn

d

dz
� ik	n

� �
AmðzÞ ¼ ðf surf

n þ f vol
n Þeiðka7kbÞz; m ¼ 1; 2;y; ð33Þ

where

Pmn ¼ �
1

4

Z h

�h

v	n
2
�
Sm

2
þ

vm

2
�
S	

n

2

� �
� nz dO; ð34Þ

f surf
n ¼ �1

2
v	n
%S
7 � nyj

y¼h
y¼�h; ð35Þ

f vol
n ¼

1

2

Z h

�h

%f
7 � v	n dy; ð36Þ

and kn is the wavenumber of the mode identified by index n that is not orthogonal (Pmna0) to the
mode with wavenumber km: Note that in Eq. (33) there is no summation over m: The
orthogonality relation for propagating and evanescent modes is given by [23]

Pmn ¼ 0; kmak	n: ð37Þ

According to Eq. (37), a propagating mode m is orthogonal to all modes except itself, an
evanescent mode m is orthogonal to itself and for any given evanescent mode m there is only one
evanescent mode n that is not orthogonal to mode m: Hence, for each mode m there is always a
single mode n to be used in Eq. (33). Note that we introduced the factor of 1

2
and the complex

conjugate in Eqs. (26) and (31), unlike in the equation presented by Auld [23]. The reason for
doing so here is that when evaluating products of solutions it is essential that real functions are
used. This problem does not arise in the linear theory. We have therefore shown explicitly when
the factors of 2 appear in Eqs. (34)–(36) to facilitate comparison with the equations presented by
Auld [23].
From the source condition, Eq. (38), we have

vð2Þðy; 0; tÞ ¼ 0 ð38Þ
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and consequently from Eq. (31) we have at second order the following initial condition for each
modal amplitude:

Amð0Þ ¼ 0: ð39Þ

Hence, Eq. (33) has the solution

AmðzÞ ¼ %AmðzÞeiðka7kbÞz � %Amð0Þeik
	
nz; ð40Þ

where

%AmðzÞ ¼
iðf vol

n þ f surf
n Þ

4Pmn½k	n � ðka7kbÞ�
; k	naka7kb; ð41Þ

%AmðzÞ ¼
f vol
n þ f surf

n

4Pmn

� �
z; k	n ¼ ka7kb: ð42Þ

From Eqs. (35) and (39), we observe that the boundary and source conditions are satisfied for
each mode used in the expansion, Eq. (31).
For propagating modes, Pmm is the complex power flux in direction nz of the mth propagating

mode used in the expansion of the secondary solution given in Eq. (31). Also, f vol
m and f surf

m are
interpreted as the power flux through the volume and through the surface, respectively, due to the
primary wave.
When k	naka7kb; the amplitude of the secondary solution remains bounded and oscillates with

a spatial periodicity, often called the dispersion length Ln; given by

Ln ¼
2p

jk	n � ðka7kbÞj
: ð43Þ

When phase matching (also called synchronism) occurs between the primary wave and one of the
waveguide modes used in the expansion of the secondary solution, i.e., k	n ¼ ka7kb or Ln-N;
and if the power flux due to the primary solution is different from zero (f vol

n þ f surf
n a0), the

amplitude of the secondary solution grows linearly in the direction of propagation. This
phenomenon is called internal resonance [30]. Hence, two conditions for internal resonance must
be satisfied: (1) synchronism, or phase matching, k	n ¼ ka7kb; (2) non-zero power flux, f vol

n þ
f surf
n a0:
In order to illustrate what we mean by synchronism we plot the dispersion curves for a certain

waveguide (Fig. 4), and choose the two modes (oa; ka) and (ob; kb) as the primary waves. If one of
the components of the forcing function fð1;1Þ; say the difference frequency o�; coincides with one
of the modes used in the expansion of the secondary solution, phase matching occurs, i.e., this
component propagates at the same phase speed, and is thus in synchronism with, the forcing
functions. In Fig. 4(a) we present an example with phase matching. In this figure the difference-
frequency component can propagate in a mode for which k1 ¼ ka � kb; and there is synchronism.
In Fig. 4(b) an example without phase matching is presented. Here, the only two modes in which
the difference frequency can propagate have wavenumbers different from that of the forcing
functions (k1;k2aka � kb), and the interaction is asynchronous.
No evanescent modes can be in resonance with primary waves that consist only of propagating

modes. Hence, evanescent modes contribute to the expansion only as bounded oscillations.
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Now suppose that a propagating mode, say the rth mode with wavenumber kr; is in resonance
with the primary wave. The secondary solution then has the form

vð2Þ ¼
1

2

X
mar

½AmðzÞvme
�io7t� þ

z

2
frvre

iðkrz�o7tÞ þ c:c:; ð44Þ

where

fr ¼
f vol
r þ f surf

r

4Prr

ð45Þ

and Am ðmarÞ is given by Eqs. (40) and (41). Since the summation in Eq. (44) is bounded, as z
increases the second term eventually dominates the first, and the secondary solution can be
expressed as

vð2Þ ¼
z

2
frvre

iðkrz�o7tÞ þ c:c: ð46Þ

In the absence of internal resonance, all modes are needed to represent the secondary solution.
However, when one mode is in resonance with the primary wave, this mode is the dominant term
in the solution, and the other terms can be neglected after a certain propagation distance z1; where
z1 is defined as the propagation distance where the amplitude of the bounded term equals that of
the resonant term in Eq. (44):

X
mar

Amvm

�����
����� ¼ z1jfrvrj: ð47Þ

In addition, the perturbation condition, Eq. (8) must be satisfied, and therefore the solution given
by Eq. (46) is valid in the interval

z1ozoz2; ð48Þ

where

z2 ¼ juð1Þj=jfrurj ð49Þ

and ur is the particle displacement of the rth mode at frequency o7:
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Fig. 4. Cases of (a) synchronous and (b) asynchronous interaction of the primary waves with the difference-frequency

component, corresponding to whether the point (o�; ka � kb) does or does not lie on a dispersion curve, respectively.
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The evanescent modes are important in Eq. (44) to guarantee an infinite number of modes in
the expansion. However, since these modes do not propagate and are important only close to the
source [23], they will not be used to estimate z1 and z2:
In the next sections we present examples based on Eqs. (27)–(36) for longitudinal plane waves

and infinite plates. The medium considered is aluminum, whose elastic constants are given in
Table 1.

4.2. Longitudinal plane waves

In order to facilitate the understanding of the more difficult calculations associated with
waveguide problems presented in the following sections, we first consider the solution for second-
harmonic generation by a longitudinal plane wave in an unbounded medium. For a longitudinal
plane wave propagating in the z direction, Eq. (1) becomes [26]

ðlþ 2mÞ
@2uz

@z2
� r0

@2uz

@t2
� g

@uz

@z

@2uz

@z2
¼ 0; ð50Þ

where

g ¼ 3ðlþ 2mÞ þ 2Aþ 6Bþ 2C ð51Þ

is a coefficient of non-linearity. To simplify the notation we replace uz with u for the rest of this
section. The linear solution is the plane wave

uð1Þ ¼ 1
2U0e

iðkaz�oatÞ þ c:c: ¼ U0 cosðkaz � oatÞ: ð52Þ

For the secondary wave we have

ðlþ 2mÞ
@2uð2Þ

@z2
� r0

@2uð2Þ

@t2
þ f ð1;1Þ ¼ 0; ð53Þ

where f ð1;1Þ is given by

f ð1;1Þ ¼ �g
@uð1Þ

@z

@2uð1Þ

@z2
: ð54Þ

The source condition is

uð2Þð0; tÞ ¼ 0: ð55Þ

Substituting Eq. (52) into Eq. (54) we obtain

f ð1;1Þ ¼
igk3aU2

0

4
ei2ðkaz�oatÞ þ c:c: ð56Þ

In order to solve Eq. (53) using the method outlined in Section 4.1, the reader may think of the
unbounded medium as a plate with infinite width and with dispersion relation given by oa ¼ clka:
The solution for the particle velocity at frequency 2oa is

v
ð2Þ
1 ðz; tÞ ¼ 1

2
v1e

i2ðkaz�oatÞ þ c:c:; ð57Þ

where subscript 1 means that there is only one mode at frequency 2oa: The stress tensor in
Eq. (24) associated with longitudinal waves at frequency 2oa reduces to

S
ð2Þ
1 ¼ �1

2
r0clv1e

i2ðkaz�oatÞ þ c:c: ð58Þ
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Therefore, the expansion in Eq. (31) becomes

vð2Þ ¼ 1
2
A1ðzÞv1e�i2oat þ c:c:; ð59Þ

where the amplitude A1ðzÞ is given by

A1ðzÞ ¼
f vol
1 þ f

surf
1

4P11

 !
zei2kaz: ð60Þ

We now find the terms f vol
1 ; f

surf
1 and P11: Since the medium is unbounded we have f

surf
1 
 0:

According to Eq. (34), the complex power P11 per unit volume is

P11 ¼ �1
8
v1S1 ¼ 1

8
r0clv

2
1 ð61Þ

and according to Eq. (36) the power transfer from the primary wave through the volume is

f vol
1 ¼

igk3aU2
0

8
v1: ð62Þ

Substituting Eqs. (61) and (62) into Eq. (60) we obtain

A1ðzÞ ¼ �
igk3aU2

0

4r0clv1
zei2kaz ð63Þ

and substituting Eq. (63) into Eq. (59) we have for the second-harmonic particle velocity

vð2Þ ¼ 1
2
frze

i2ðkaz�oatÞ þ c:c:; ð64Þ

where

fr ¼ �
igk3aU2

0

4r0cl

: ð65Þ

For the second-harmonic particle displacement we have, from Eq. (59),

uð2Þ ¼
1

16

gk3aU2
0

r0cloa

zei2ðkaz�oatÞ þ c:c: ð66Þ

By defining bl ¼ g=2r0c
2
l we thus recover the form presented by Norris [2]:

uð2Þ ¼
bl

4

U0oa

cl

� �2

z cos½2ðkaz � oatÞ�: ð67Þ

Since we have only one mode in the expansion then z1 ¼ 0; and z2 is found by equating the
primary and secondary solutions as follows:

juð2Þj
juð1Þj

¼
bl

4

oa

cl

� �2

U0z2 
 1: ð68Þ
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Therefore z2 ¼ 4c2l =blo
2
aU0; and the solution in Eq. (67) is valid for

z5
4c2l

blo2
aU0

: ð69Þ

4.3. Infinite plate

For an infinite plate with stress-free surface (see Fig. 1) the particle displacements of the
primary waves are the plate modes presented in Section 3, which can be written in the form of
Eq. (26). The expressions for uaðyÞ and ubðyÞ depend on which modes are excited. The
dimensionless particle displacement %u and dimensionless mode amplitude %AðzÞ used in the
examples are defined as

%u ¼ pu=2h; %AmðzÞ ¼ pAmðzÞ=2h: ð70Þ

4.3.1. Example 1: second harmonic, no resonance

In this first example, a monofrequency source at dimensionless frequency %oa ¼ 1:4 [see Eq. (20)]
excites the first symmetric RL mode, for which %ka ¼ 0:994: This mode is plotted in Fig. 5. From
the dispersion equation [Eq. (18)] we find that eight propagating modes exist at the second-
harmonic frequency. These are the modes used in the expansion of the second-harmonic
component (2 %oa ¼ 2:8; 2 %ka ¼ 1:988). The dimensionless wavenumbers %km of these eight
propagating modes are presented in Table 2.
Note that two modes in Table 2, the second antisymmetric RL mode and the second symmetric

SH mode, are in phase with the primary wave, i.e., %kmð2 %oaÞ ¼ 2 %kað %oaÞ ¼ 1:988: However, the
power flux from the primary wave to these modes is zero (f vol

m þ f surf
m ¼ 0), and hence the

amplitudes of these modes in the expansion are zero.
The reason for zero power flux from the primary wave to the symmetric SH mode lies in the fact

that since the displacement vector of the symmetric RL mode has a zero ux component and the
other components are functions only of y; the x components of the vectors %f

2oa and %S
2oa � ny are

zero, and therefore the terms in Eqs. (35) and (36) for the SH modes (vxa0; vy; vz ¼ 0) are zero.
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Fig. 5. Primary wave—first symmetric RL mode shape for %oa ¼ 1:41: (a) axial component of the particle displacement

and (b) transverse component.
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We can generalize this observation by saying that a primary RL mode (symmetric or
antisymmetric) cannot excite SH modes (symmetric or antisymmetric) of the second-harmonic
solution. However, we will see in the second example, presented in Section 4.3.2, that primary SH
modes can excite RL modes in the expansion of the second-harmonic solution.
No power flux from the primary wave to the antisymmetric RL mode occurs because the

forcing terms %S
2oa and %f

2oa ; which have a quadratic term in u, are also symmetric with respect to
the plane y ¼ 0; and consequently using parity symmetry in y we can conclude that f vol

m and f surf
m

are zero. Following this same reasoning, we can say that in general a symmetric (antisymmetric)
primary RL mode does not excite antisymmetric (symmetric) secondary RL modes used in the
expansion of the second-harmonic solution.
In Fig. 6 are plotted the magnitudes of the second-harmonic components along the surface of

the plate (y ¼ h), normalized by the amplitude of the primary wave at that same location. The
magnitudes of the axial and transverse components of the dimensionless displacement of the
primary wave (first symmetric RL mode) evaluated on the surface of the plate (y ¼ h) are %uz0 ¼
1:0� 10�9 and %uy0 ¼ 1:0� 10�9; respectively. Fig. 7 shows the magnitudes of the non-zero modal
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Table 2

Wavenumbers %km of the propagating modes in the expansion of the second-harmonic component (2 %oa¼ 2:8;
2 %ka¼ 1:988)

Mode First Second Third

RL symmetric 2.960 1.498 0.881

RL antisymmetric 3.063 1.988 —

Symmetric 2.82 1.988 —

Antisymmetric 2.63 — —

Fig. 6. Second harmonic (2 %oa ¼ 2:82) propagating on the top of an aluminum plate, y ¼ h: (a) axial component of the

particle displacement and (b) transverse component.

Fig. 7. Amplitudes jAmðzÞj of all propagating modes comprising the solution presented in Fig. 6: (a) first symmetric

mode %k ¼ 2:96; (b) second symmetric mode %k ¼ 1:489; and (c) third symmetric mode %k ¼ 0:881:
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amplitudes %AmðzÞ for the propagating modes used to plot Fig. 6. These amplitudes oscillate with
spatial periodicities given by

%Lm ¼
2p

%km � 2 %k

����
����; ð71Þ

where %Lm ¼ pLm=2h is the dimensionless dispersion length that follows from Eqs. (43) for
propagating modes.
Therefore, despite of the existence of phase matching between the primary wave (first symmetric

RL mode) and two modes at the second-harmonic frequency (second antisymmetric RL and
second symmetric SH modes), internal resonance does not occur, and consequently the second-
harmonic component propagates with bounded amplitude because only non-resonant modes have
non-zero modal amplitudes AmðzÞ:

4.3.2. Example 2: second harmonic, resonance

Here, a monofrequency source at frequency %oa ¼ 1:15 excites the first antisymmetric SH mode
( %ka ¼ 0:568). The modes used in the second-harmonic (2 %oa ¼ 2:3; 2 %ka ¼ 1:136) expansion are
presented in Table 3.
Phase matching occurs between the second symmetric RL and the second symmetric SH modes.

The axial and transverse components of the vectors %f
2oa and %S

2oa � ny are even and odd functions,

respectively, with respect to the plane y ¼ 0: The x components of %f
2oa and %S

2oa � ny are zero, since

for a SH mode uy ¼ uz ¼ 0 and ux ¼ uxðy; zÞ: In Fig. 8 are plotted the components of the vector

%f
2oa and in Fig. 9 are plotted the components of the vector %S

2oa � ny: No power is transferred from

the primary wave to the second symmetric SH modes used in the expansion of the second-
harmonic solution, and consequently internal resonance does not occur. By using the same ideas,
we can generalize this observation by saying that a primary wave in the SH mode, which can be
either symmetric or antisymmetric, cannot generate any resonant SH mode at the second
harmonic.
The power flux to the second symmetric RL mode is non-zero and hence this mode is

responsible for the internal resonance. In Fig. 10 is plotted the particle displacement of the second
harmonic along the surface of the plate and normalized by the magnitude of the primary wave
( %ux0 ¼ 1:0� 10�3). To plot Figs. 10(a) and (b) we used only non-resonant propagating modes in
the expansion, and to plot Figs. 10(c) and (d) we used only the resonant mode.
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Table 3

Wavenumbers %km of the propagating modes used in the expansion of the second-harmonic component (2 %oa¼ 2:3;
2 %ka¼ 1:136)

Mode First Second Third

RL symmetric 2.325 1.136 0.368

RL antisymmetric 2.525 1.350

SH symmetric 2.3 1.136 —

SH antisymmetric 2.071 — —
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Fig. 8. Vector %f
2oa for a monofrequency source that excites the first antisymmetric SH mode at frequency %oa ¼ 1:15:

(a) axial component %f 2oa and (b) transverse component %f 2oa
y :

Fig. 9. Vector %S
2oa � ny for the first antisymmetric SH mode at primary frequency %oa ¼ 1:15: (a) axial component

ð %S2oa � nyÞz and (b) transverse component ð %S2oa � nyÞy:

Fig. 10. Particle displacement of the second-harmonic component (2 %oa ¼ 2:3) at the top (y ¼ h) of the aluminum plate,

normalized by the magnitude of the primary wave %ux0 ¼ 1:0� 10�3 at the same location. The magnitudes of the second

harmonic using only non-resonant propagating modes in the expansion: (a) axial component and (b) transverse

component. The magnitudes of the second harmonic using only the resonant mode in the expansion: (c) axial

component and (d) transverse component.
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From Fig. 10 we can say that the resonant mode has an amplitude of the same order as that of
the other propagating modes at pz1=2h ¼ 10: From Fig. 10, the magnitude of the transverse
component of the resonant mode is of same order as that of the primary solution when
z2Eð2h=pÞ ¼ 104: For example, for a plate with thickness 2h ¼ 1 cm, we have fa ¼ 1:1MHz and
ux0 ¼ 3:18� 10�6 m, and therefore we obtain z1 ¼ 0:3m and z2 ¼ 30m in Eq. (48).

4.3.3. Example 3: difference frequency, resonance
For the third example, the difference-frequency component of a bifrequency source is analyzed.

The source excites the first antisymmetric RL mode at frequency %oa ¼ 4:54 ð %ka ¼ 4:873Þ; and the
first symmetric RL mode at frequency %ob ¼ 2:76 ð %kb ¼ 2:879Þ: The magnitudes of the axial and
transverse components evaluated on the surface y ¼ h for the first symmetric RL mode are

%uz0 ¼ 1:0� 10�5 and %uy0 ¼ 1:0� 10�5; respectively, and for the first antisymmetric RL mode they
are %uz0 ¼ 1:0� 10�5 and %uy0 ¼ 1:0� 10�5; respectively. In this example, we present a case where
internal resonance occurs.
Four components appear due to the non-linearity: the two second-harmonic components, and

the sum- and difference-frequency components. The propagating modes used in the expansion of
the second harmonics [ð2 %oa ¼ 9:08; 2 %ka ¼ 9:746Þ; ð2 %ob ¼ 5:52; 2 %kb ¼ 5:578Þ], and of the sum
frequency ð %oþ ¼ 7:3; %ka þ %kb ¼ 7:752Þ are presented in Tables 4–6. Since phase matching does not
occur for any of these components, they travel only as bounded oscillations.
The propagating modes used in the expansion of the difference-frequency component ð %o� ¼

1:78; %ka � %kb ¼ 1:994Þ are presented in Table 7. Note that there exists phase matching with the
first antisymmetric RL mode, i.e., ka � kb ¼ km at the difference frequency, where the subscript m
stands for the first antisymmetric RL mode.
Since the axial and transverse components of the vectors %f

�
(Fig. 11) and %S

�
(Fig. 12) are odd

and even functions, respectively, with respect to the plane y ¼ 0; Eqs. (35) and (36) are non-zero for
antisymmetric RL modes. Therefore the power flux from the bifrequency primary wave to the first
antisymmetric RL mode at the difference frequency is non-zero, and internal resonance occurs.
In Fig. 13 are plotted the components of the particle displacement at the difference frequency

along the surface of the plate and normalized by the sum of the magnitudes of the primary waves.
To plot Figs. 13(a) and (b) we used only non-resonant propagating modes in the expansion, and
to plot Figs. 13(c) and (d) we used only the resonant mode. It is observed that at pz1=2hE2 the
amplitude of the resonant and of the non-resonant modes are of the same order. Therefore the
resonant component dominates for zbz1 ¼ 4h=p: For example, for a plate with thickness
2h ¼ 1 cm we have fa ¼ 0:7MHz and fb¼ 0:4MHz. The amplitudes of the transverse components
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Table 4

Wavenumber %k of the propagating modes used in the expansion of the second-harmonic component (2 %oa¼ 9:08;
2 %ka¼ 9:746)

Mode First Second Third Fourth Fifth Sixth Seventh Eighth

RL symmetric 9.728 8.711 7.648 5.82 4.45 4.11 3.17 —

RL antisymmetric 9.728 8.986 8.268 6.826 4.95 4.03 2.42 1.00

SH symmetric 9.08 8.857 8.151 6.811 6.81 4.29 — —

SH antisymmetric 9.024 8.57 7.579 5.783 1.20 — — —
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measured on the surface are uy0 ¼ 3� 10�9 m for the first symmetric RL mode and
uy0 ¼ 3� 10�9 m for the first antisymmetric RL mode. We obtain z1 ¼ 0:006m and z2 ¼ 6:4m
in Eq. (48). Also, at 1m from the source we have for the transverse component of the particle
displacement of the difference-frequency juð�Þ

y j ¼ 1:0� 19�9 m.
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Table 5

Wavenumbers %km of the propagating modes used in the expansion of the second-harmonic component (2 %ob¼ 5:52;
2 %kb¼ 5:758)

Mode First Second Third Fourth Fifth

RL symmetric 5.918 5.293 3.806 2.470 1.575

RL antisymmetric 5.911 4.711 3.025 2.520 —

SH symmetric 5.52 5.51 3.804 — —

SH antisymmetric 5.42 4.634 2.338 — —

Table 6

Dimensionless wavenumbers %km of the propagating modes used in the expansion of the sum-frequency component

( %oþ¼ 7:3; %ka þ %kb¼ 7:752)

Mode First Second Third Fourth Fifth Sixth

RL symmetric 7.821 7.1637 6.178 4.350 3.179 2.049

RL antisymmetric 7.821 6.786 5.321 3.728 3.375 2.001

SH symmetric 7.3 7.02 6.106 4.158 — —

SH antisymmetric 7.231 6.655 5.3188 2.071 — —

Table 7

Wavenumbers %km of the propagating modes used in the expansion of the difference-frequency component ( %o�¼ 1:78;
%ka � %kb¼ 1:994)

Mode First Second

RL symmetric 1.606 —

RL antisymmetric 1.994 0.879

SH symmetric 1.78 —

SH antisymmetric 1.472 —

Fig. 11. Vector f� for a bifrequency source that excites the first antisymmetric RL mode at frequency %oa ¼ 4:54 and

first symmetric RL mode at frequency %ob ¼ 2:76: (a) transverse component f �
y and (b) axial component f �

z :
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5. Summary

Harmonic generation in elastic isotropic plates was investigated in this paper. Since the
associated boundary value problem consists of equations that are mathematically similar to those
for forced linear waveguides, the method developed by Auld [23] was used here to obtain the
solution for harmonic generation. The forcing functions applied in the volume and on the surface
are found by substituting the primary wave solution in the non-linear terms of the equation of
motion and in the stress-free boundary condition.
In this method, the source condition is applied to each of the coefficients in the expansion of the

second-order solution, and hence it is satisfied independently of the number of modes used in
the expansion. The boundary conditions are satisfied for each coefficient via simple integrals. The
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Fig. 12. Vector ðS� � nyÞ for a bifrequency source that excites the first antisymmetric RL mode at frequency %oa ¼ 4:54
and first symmetric RL mode at frequency %ob ¼ 2:76: (a) transverse component ðS� � nyÞy and (b) axial component

ðS� � nyÞz:

Fig. 13. Particle displacement of the difference-frequency component ( %o� ¼ 1:78) at the top (y ¼ h) of the aluminum

plate: magnitude of difference-frequency component with only non-resonant propagating modes used in the expansion:

(a) axial component and (b) transverse component. Magnitude of difference-frequency component with only the

resonant mode used in the expansion: (c) axial component and (d) transverse component. The dimensionless amplitude

%uy0 ¼ 2:0� 10�5 is the sum of the amplitude of the primary waves.
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method allows us to quantify the influence of the primary solution in each mode in the expansion
of the secondary solution. Also with this method, the two conditions for internal resonance
appear naturally in the solution: (1) phase matching; (2) non-zero power transfer from the
primary wave to the modes used in the expansion of the secondary solution.
When internal resonance occurs there exists an interval [z1; z2] where only the resonant mode is

needed in the expansion of the secondary solution. The lower limit z1 is the distance where the
magnitude of the resonant mode is of the same order of the magnitude of the sum of all non-
resonant modes. The upper limit z2 is the distance where the magnitude of the resonant mode
equals the magnitude of the primary wave. Here we used only propagating modes to estimate z1
and z2: Due to the mechanism of dissipation, which was disregarded here, the actual values of z1
and z2 are different from those estimated. However, for materials with small coefficients of
attenuation, such as metals at room temperature, we expect a small difference between the actual
and the estimated values of z1 and z2:
The power transferred from the primary wave to the modes in the expansion of the secondary

wave was evaluated. Explanation of zero power transfer was provided on the basis of symmetry of
the modes with respect to the middle plane of the plate.
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